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ABSTRACT

Billions of doses of COVID-19 vaccines have been administered around the world, dramatically
reducing SARS-CoV-2 incidence in some settings. Many studies suggest vaccines provide a high
degree of protection against infection and disease, but precise estimates vary and studies differ in
design, outcomes measured, dosing regime, location, and circulating virus strains. Here we conduct a
systematic review of COVID-19 vaccines as of August 2021. We included efficacy data from Phase 3
clinical trials for 13 vaccines within the WHO Emergency Use Listing evaluation process and real-world
effectiveness for 5 vaccines with observational studies meeting inclusion criteria. Vaccine metrics
collected include effects against asymptomatic infection, any infection, symptomatic COVID-19, and
severe outcomes including hospitalization and death, for both partial and complete vaccination, and
against SARS-CoV-2 variants of concern. In addition, we review the epidemiological principles behind
the design and interpretation of vaccine effects and explain important sources of heterogeneity between
studies.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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MAIN TEXT
Introduction

On March 11, 2020, the World Health Organization (WHO) declared SARS-CoV-2 a global pandemic’.
Worldwide, over 200 million COVID-19 cases and over 4 million deaths have been recorded to date.
SARS-CoV-2’s rapid global spread and its alarming clinical severity have accelerated demand for
COVID-19 immunizations that safely and effectively prevent disease incidence or reduce severity.
Despite the traditionally prolonged vaccine development timeline, over 20 COVID-19 vaccine
candidates have received emergency use authorization in at least one country, and 3 billion people
have been vaccinated globally?3.

Evidence from clinical trials and observational studies overwhelmingly support the safety and
immunogenicity of numerous COVID-19 vaccines, especially when it comes to protection against
severe infection and death in fully vaccinated individuals. However, precise estimates of vaccine
efficacy and effectiveness (“VE”) have varied across studies due to a range of factors. For example, an
interim analysis across four Phase 3 trial sites found AstraZeneca’s two-dose viral vector vaccine
(AZD1222) had 70% efficacy against symptomatic COVID-19 disease; when disaggregated by dosing
schedule, estimated VE was nearly 30% higher in the sub-cohort receiving a modified low vaccine dose
followed by a standard dose (90%) compared to the sub-cohort receiving two standard doses (62%)*.
Observational studies in the UK®?®, Scotland®, Brazil'®, and the Netherlands'', have since presented a
range of VE estimates (60% to 94%) obtained from non-randomized designs (i.e., test-negative control,
prospective cohort) using effectiveness measures (e.g., any SARS-CoV-2 infection) differing from the
outcomes of the clinical trials.

SARS-CoV-2 evolutionary dynamics have further confounded interpretation of heterogeneous VE
estimates obtained from comparably designed COVID-19 vaccine studies, particularly under real-world,
non-experimental conditions. The emergence of SARS-CoV-2 strains designated variants of concern
(VOC) by WHO, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2), has
recently increased concern over attenuated VE given that some variants are associated with higher
viral load'*"® and evasion of neutralizing antibodies ex vivo'-'°. Recent studies have reported
diminished effectiveness of the Pfizer-BioNTech BNT162b2 vaccine against the Delta SARS-CoV-2
variant?®?', relative to the 95% VE measure against parent SARS-CoV-2 lineages obtained from clinical
trials®. Efforts to attribute these observed reductions to waning immunity, diminished protection against
circulating SARS-CoV-2 variants, study methodology, or other contextual factors (i.e., presence vs
absence of non-pharmaceutical interventions) is constrained by their co-occurrence and endogeneity.
Nonetheless, synthesizing the totality of the evidence for COVID-19 VE, and understanding the
constellation of factors contributing to observed heterogeneities, is imperative for policy-makers to
design effective and equitable COVID-19 vaccination campaigns during a rapidly evolving pandemic.

Here, we systematically reviewed vaccine efficacy and effectiveness data for COVID-19 vaccines
against various clinical outcomes, specifically asymptomatic infection, any infection, symptomatic
disease, hospitalization, and death. Additionally, our review considers VE measures for both full and
partial immunization courses and circulating SARS-CoV-2 variants of concern.
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Methods

For the purpose of this study, we use the abbreviation “VE" to refer to both vaccine efficacy (from
randomized clinical trials) and vaccine effectiveness (from observational studies). We chose to review
all vaccines which had received, or submitted applications for, Emergency Use Listing from WHO as of
August 15, 20212 and had at minimum publicly released data from completed Phase 3 trials (Table 1).
We searched for clinical trial efficacy results published in peer-reviewed scientific journals (PubMed,
Google Scholar), preprint servers (medRxiv, bioRxiv), government public health agency websites, in
news articles (Google), on the vaccine manufacturers' websites, and in the databases of medical
regulatory agencies (e.g., the US Food & Drug Administration or the European Medicines Agency).
Searches were conducted using the vaccine’s brand, trade, or research name. To locate observational
studies of vaccine effectiveness, we used a detailed search query applied to multiple databases
(Supplementary Methods), and only included results that appeared in at least a detailed report or
preprint form. Studies underwent an initial review of the title/abstract, before progressing to a more
detailed full-text review (Figure S1). From each document, we extracted VE against any stage of
infection (Table S1). For the full vaccine course (1 or 2 doses, depending on the vaccine brand), results
were only included if at least 1 week had passed between the final dose and case detection. For VE
after a partial course, cases must have occurred at least 2 weeks after the first dose but before the
second dose.

Observational studies were excluded if a proper control group was not used (e.g., modeled or historic
controls), outcomes were not laboratory-confirmed, the study design did not attempt to account for
confounding, vaccination status was determined by self-report (not documented) for >10% of
participants, confidence intervals (Cls) were not reported (except in cases where it was not possible to
calculate Cls), significant bias was present as determined by expert opinion, if the early
post-vaccination period was used as the reference period for calculating VE (e.g., day 0-12 vs. day
12-21), or if the definition of unvaccinated included days 0-12 post vaccination. For this review only
studies including persons with and without the clinical outcome under investigation and with and without
vaccination were included. Thus, impact studies and studies that only evaluated the risk of progression
to severe disease among SARS-CoV-2-positive individuals were excluded. We evaluated studies that
reported VE for a combination of vaccines but did not include those values here unless they also
disaggregated results by vaccine product. Finally, we excluded studies that only presented 1st dose VE
of a 2-dose vaccine while including some persons who had received 2 doses in the estimate. We
classified VE as specific against a particular SARS-CoV-2 variant if sequencing or other molecular
detection methods were used within the study to confirm the variant causing infection in all individual
cases contributing to a VE estimate. The data from observational studies included here is also available
in table and graphical formats on VIEW-hub, a resource developed by the International Vaccine Access
Center at Johns Hopkins University (view-hub.org/resources) and in the Data Supplement (Table S1).

Defining how well a vaccine prevents infection and disease

Like other pharmaceutical products, vaccines are evaluated in clinical trials for both safety and efficacy,
and in this review, we focus on the latter. Vaccine efficacy is defined as the amount by which
vaccination reduces the probability that an individual develops disease in a particular time period
compared to those who did not receive the vaccine. It is calculated using this formula:
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VE =1 (# cases among vaccinated /# vaccinated) -1 risk in vaccinated group
- (# cases among unvaccinated/# unvaccinated) risk in unvaccinated group

where sometimes the denominator “# vaccinated” (“# unvaccinated”) is replaced with the sum of the
total time enrolled in the study among vaccinated (unvaccinated) subjects (i.e., the “person time”)?*2°,

Vaccine efficacy only describes the relative, as opposed to absolute, risk of disease. For example, if the
risk of disease within a certain time frame is reduced from 50% in unvaccinated individuals to 10% in
vaccinated individuals, then the vaccine efficacy (80%) is the same as in another setting where the risk
of disease in that time frame was reduced from 5% among the unvaccinated to 1% among the
vaccinated. This is a desired feature of a metric for vaccine strength, since absolute risk may change
over time during an epidemic, due to factors like seasonality and non-pharmaceutical interventions
(e.g., shelter-in-place ordinances, face mask use). The value of vaccine efficacy also does not typically
tell us how an imperfect vaccine fails. A 90% efficacious vaccine could mean one of three things: (1)
that 90% of vaccinated individuals are completely resistant to disease while the other 10% are as
susceptible as unvaccinated individuals (“all-or-nothing”), (2) that all vaccinated individuals have exactly
1/10th the risk of getting infected from any given exposure (i.e., a “leaky” vaccine), or (3) a combination
of these scenarios®*.

To measure vaccine efficacy for COVID-19 and in general, the specific clinical outcome that the vaccine
is meant to prevent (the definition of “disease”) must be carefully defined. The ideal goal of vaccination
is to completely prevent infection, meaning that the vaccine-induced immune response must be able to
block the earliest attempts of the pathogen to replicate within an individual’s body. If infection cannot be
established, then this individual will not experience symptoms of the disease nor transmit to susceptible
individuals. This sort of “sterilizing immunity” is rare, and vaccine efficacy against infection is difficult to
measure in practice?®? since, for short-lived and commonly asymptomatic infections like SARS-CoV-2,
this would require frequent testing of everyone in the study population. Moreover, high efficacy against
infection is not necessary for a vaccine to be beneficial. To reduce the public health impact of an
infectious disease, it might be enough to prevent the symptoms of the disease, even if infection still
occurs®. Even vaccines that do not completely prevent infection may trigger immune responses that
can reduce viral load, the duration of infectiousness, or spread of virus between tissues, preventing
deleterious clinical outcomes®-*'.

For COVID-19, the primary vaccine efficacy outcome chosen as the endpoint for most clinical trials was
the ability to prevent symptomatic, laboratory-confirmed COVID-19 disease®. This outcome was
defined as the occurrence of COVID-19-associated symptoms (e.g., cough, shortness of breath, fever)
occurring in the presence of detectable SARS-CoV-2. This definition of vaccine efficacy represents a
trade-off between practicality and public health importance. Symptoms can be self-assessed by
participants and testing restricted to those reporting symptoms. However, most individuals with
COVID-19 recover completely with only mild or moderate symptoms, and the major concern is the
subset of individuals who develop more severe disease®>*. While the fraction of infections progressing
to a severe stage is high enough to have overwhelmed healthcare resources globally and led to millions
of excess deaths in 2020 and 2021, it is still rare enough that few events would be expected to occur in
a clinical trial of tens of thousands of individuals lasting a few months. While many trials did report
efficacy against severe outcomes like hospitalization or death as secondary outcomes despite small
numbers?2>* non-randomized post-approval studies provide further estimates of these metrics for
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much larger sample sizes. In this paper, we summarize vaccine efficacy and effectiveness values
reported for all stages of infection from both clinical trials and observational studies.

Randomized and observational studies for estimating vaccine effects

Formally, the calculation of VE compares the likelihood of infection in vaccinated individuals to the
hypothetical risk they would have had if they were unvaccinated. In reality, hypothetical comparisons
are impossible and must be made between different groups of individuals. Vaccine studies therefore
strive to choose comparable groups in terms of disease risk, so any observed differences between
them can be attributed to vaccination. One approach is to conduct a study where subjects are randomly
assigned to receive the vaccine or not, which, with large enough sample sizes usually ensures there
will not be any significant differences. In reality, randomization is not always possible, so “observational”
studies use data from situations where vaccine administration was non-random and attempt to isolate
the effect of vaccination by accounting for differences between groups in the study design and analysis.

This review includes data from both randomized controlled trials (RCTs) that estimate vaccine efficacy
and observational studies that report real-world vaccine effectiveness, which each have pros and
cons*“¢, The most obvious strength of RCTs is that randomization helps ensure that the results are not
biased by participants' health-seeking behaviors and risk factors for disease. While RCTs are the
gold-standard for vaccine studies®, they are very costly and rarely include more than tens of thousands
of participants. Consequently, the incidence of more severe outcomes of infection is often limited and
long study durations may be needed. RCTs may exclude participants with a high risk of death, or
populations who need the vaccine but who are too risky to include in the trial, such as pregnant women,
young children, and those with comorbid health conditions. The age and race composition of trial
populations may also be relatively homogenous. Finally, participants in an RCT may become unblinded
if they are told their vaccination status by study administrators or infer it based on vaccine side effects,
which can introduce bias or confounding into the study.

Once a vaccine is shown to be safe and efficacious in clinical trials and is authorized for general use,
further randomized trials are often considered unethical or impractical, especially in the setting of a
wide-spread epidemic like the COVID-19 pandemic. Instead, observational studies are used to
augment estimates of vaccine efficacy with values of real-world effectiveness and include designs such
as case-control studies (including test-negative designs) and cohort studies (prospective or
retrospective)®#748, Compared to RCTs, observational studies have their own costs and benefits. They
must carefully address biases due to behavioral differences in those who chose to or were eligible to
receive vaccines in real-world settings compared to those who did not. For example, vaccine recipients
may be more cautious and have fewer possible exposures than individuals who chose not to be
vaccinated; they may also be less cautious if they believe they are protected by vaccination. On the
other hand, observational studies provide a more realistic picture of population heterogeneity compared
to RCTs, and likely include populations of interest, like people who are immunocompromised. During
massive national vaccination campaigns like those occurring for COVID-19, it is also possible to obtain
much larger sample sizes from real-world observational studies, therefore arguably improving the
precision of estimates for effectiveness, especially against severe outcomes.

Sources of heterogeneity across studies
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COVID-19 vaccine studies were conducted by many independent research teams and in diverse
epidemic settings around the world (Table 1, Table 2, Table S1, Figure 1). Consequently, there are
several potential sources of heterogeneity between studies that make it difficult to compare VE
estimates between them. These factors have been described elsewhere*®*® and include:

e Study population: When a study includes a greater number of participants who are at higher risk
of developing symptomatic disease (e.g., older individuals) or with conditions that could reduce
the immunogenicity of vaccines (e.g., people living with HIV), VE can be reduced.

e Outcome and case definition: VE values differ between disease outcomes with varying levels of
severity. Even when studies have the same stated outcome, the case definition can vary
substantially. For example, most clinical trials used ‘symptomatic disease’ with laboratory
confirmed SARS-CoV-2 infection as the primary outcome but included anywhere from 5 (for
AstraZeneca/AZD1222*°) to 16 (Janssen/Ad26.COV2.S%*) different potential symptoms and
varied in requiring one or two to be present. These differences are exacerbated in effectiveness
studies that often rely on passive surveillance by health systems. In addition, differences in the
timing included in the definition of the disease outcome (e.g., death within 30 days after
diagnosis) can lead to heterogeneities.

e Follow-up period: Since it takes time after vaccination for an effective adaptive immune
response to develop, studies that begin the estimation of VE sooner could observe reduced VE
(e.g., 7+ days for Novavax/NVX-CoV2373 vs 28+ days for Janssen/Ad26.COV2.S). In addition,
immune protection may eventually start to wane over time, and so studies that cover longer
periods from time since vaccination could also lead to a lower VE.

e Predominant variants: Some SARS-CoV-2 variants of concern have been observed to exhibit
immune-escape properties'” (e.g., Beta®'*® and Delta?>%"* variants). Studies conducted when
such variants account for a greater proportion of overall infections could result in lower observed
vaccine efficacy (Figure 1).

e Force of infection: In studies done during time periods of higher prevalence of circulating virus
(Eigure 1), the number of exposures each individual experiences during the study period could
be increased, which could make it more likely at least one exposure overwhelms
vaccine-induced immunity and could lead to reduced observed VE, especially for vaccines that
reduce per exposure risk (“leaky” vaccines)?>®*.

e Study design and analysis: Randomization in vaccine trials can reduce (but not eliminate)
confounding. In the absence of randomization, vaccine effectiveness studies can attempt to
reduce confounding through study design (e.g., the test-negative design) and during the
analysis (e.g., controlling for potential confounding variables in regression models). Some
studies, especially those that use administrative data, may not collect and therefore control for
such possible confounders.

Results of COVID-19 vaccine studies

As of August 15, 2021 there were 24 unique vaccine products that had entered the WHO Emergency
Use Listing evaluation process, six of which had received authorization. The products under evaluation
included mRNA, viral vector, inactivated virus, protein subunit, and conjugate vaccines, and were
developed by a mix of pharmaceutical companies, non-profit research institutes, and government
agencies (Table 1). Thirteen of these vaccine candidates completed Phase 3 clinical trials and released
their VE estimates and uncertainty intervals publicly (Figure 2), which we collected via 21 separate
reports 2235-44.50-525560(Eiqure S1). This included Oxford/AstraZeneca’'s AZD1222, Bharat Biotech’s
BBV152, BioCubaFarma’s Abdala, Soberano 2, and Soberano 2 Plus, Gamaleya Institute’s Sputnik V,
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Janssen’s Ad26.COV2.S, Moderna’s mRNA-1273, Pfizer/BioNTech’s BNT162b2, Sinopharm Beijing’s
BBIBP-CorV, Sinopharm Wuhan’s WIBP-CorV, and Sinovac’s CoronaVac. Vaccine efficacy against
symptomatic COVID-19, the primary outcome of each trial, ranged from 66-95%. Vaccines with the
highest reported efficacy included both first-in-class mMRNA vaccines as well as protein subunit
vaccines, a fifty year-old technology. Some of these clinical trials additionally reported efficacy against
any infection or against more severe forms of disease (included in Figures 3-7, Table S1), though
confidence intervals on the latter tended to be very large due to limited sample sizes and trial durations.

We identified a total of 58 real-world vaccine effectiveness studies covering five vaccines that met our
inclusion criteria - BNT162b2 (Pfizer-BioNTech), mMRNA-1273 (Moderna), Ad26.COV2.S
(Janssen/Johnson & Johnson), ChAdOx1 nCoV-19 (Oxford-AstraZeneca), and CoronaVac (Sinovac)
(Table 2, Figure S1, Table S1)>'2%361-107 Thege observational studies provided VE metrics that were
not available or estimated with high uncertainty in clinical trials, such as effectiveness against more
severe outcomes, against any SARS-CoV-2 infection, against asymptomatic infection, against specific
circulating SARS-CoV-2 variants of concern, and after only a single dose of two-dose vaccine courses
(Eigures 3-7). In general, effectiveness estimates were high for full vaccine courses and overlapped
with efficacy values. Vaccines are more efficacious at preventing severe infection or death compared to
symptomatic COVID-19. The degree to which the vaccine prevented any infection, and the degree to
which partial courses prevented infection or disease, varied significantly by product. Data was
especially sparse for VE against death or asymptomatic infection and against the Gamma (P.1) variant.

The most data was available for BNT162b2, the two-dose mRNA vaccine developed by
Pfizer/BioNTech, mainly due to its use very early in 2021 in Israel, the UK, and the US (Figure 3).
Overall VE estimates measured after both doses in the general population for all study types ranged
from 90-100% for death, 85-98% for severe infection, 80-95% for symptomatic disease, 65-95% for any
infection, and 65-90% for asymptomatic infection. These values were lower after only a single dose:
60-90% for severe infection, 30-90% for symptomatic disease, and 20-90% for any infection. Where
comparisons were possible, effectiveness values from observational studies overlapped with efficacy
estimates from clinical trials. Some studies found lower VE in special populations, including residents of
long-term care facilities®®*°? and the elderly®'. Heterogeneities between studies made direct comparisons
of VE for variants of concern difficult. A few studies with head-to-head comparisons suggested reduced
VE for BTN162b2 against the Beta (B.1.351) and Delta (B.1.617.2) compared to Alpha (B.1.1.7)
variants of concern for symptomatic cases or any infection:2"61:89,

The other authorized two-dose mRNA vaccine, Moderna’s mRNA-1273, was also relatively well-studied
based largely on data from the USA, Canada, and Qatar (Figure 4). After both doses, overall VE
estimates in the general population fell between 90-96% for severe disease, 87-100% for symptomatic
disease, 85-98% for any infection, and 92% for asymptomatic infection. With only a single dose VE
values were 75-80% for severe disease, 55-92% for symptomatic disease, 30-90% for any infection,
and 45-60% for asymptomatic infection. No studies that met our inclusion criteria reported VE against
death. Studies in Qatar®®" estimated VE for symptomatic infection with Delta after both doses
compared to overall estimates or estimates for earlier variants (e.g. Alpha), and found reductions of
~10%. Similar reductions were not seen for VE against more severe outcomes or for the Alpha variant.

AstraZeneca'’s two-dose viral vector vaccine (AZD1222) was also the focus of many studies, especially
after only a single dose, likely due to the fact that the recommended interval between doses is longer
than other vaccines (12 weeks) and some countries including the UK and Canada adopted the strategy

7
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of prioritizing first doses over second doses in early 2021 (Figure 5). VE after both doses was 75-100%
for severe disease, 65-80% for symptomatic disease, 60-85% for any infection, and 15% for
asymptomatic infection overall in the general population. After only a single dose, VE ranges were
85-95% for severe disease, 50-75% for symptomatic disease, and 0-95% for any infection. There was
no evidence that the Alpha variant led to a reduction in VE for AZD1222, whereas the Delta variant
appeared to lead to a 10-15% reduction against symptomatic disease or infection after both doses and
~20% after a single dose in some #'¥ but not all®® studies. Evidence from the clinical trial site in South
Africa® suggested loss of efficacy against any symptomatic infection with the Beta variant, but with
much uncertainty (VE 10% CI [<0, 55]).

Effectiveness studies of Sinovac’s inactivated virus vaccine CoronaVac were only available from Chile®®
and for individuals >70 years old in Brazil'®, which complemented results from three separate clinical
trials, including one restricted to health care workers (Figure 6). After both doses, in the general
population, VE was 80-86% against death, 85-100% against severe disease, 65-85% against
symptomatic disease, and ~66% against any infection. With only one dose, these values were
significantly reduced, to 40-46% for death, 37% for severe disease, and 16% for symptomatic disease
and infection. No VE estimates for specific variants were available from any study, though the study in
Brazil'® was conducted during a time when Gamma (P.1) was predominant, which could in part explain
- along with the older study population - the lower VE estimates in this study.

Data was similarly sparse for Janssen/Johnson & Johnson’s Ad26.COV2.S single-dose viral vector
vaccine, with clinical trials providing the majority of data (Eigure 7). Overall VE estimates were 100%
against death, 85% for severe disease, 66% for symptomatic disease, 12-77% for any infection, and
65% for asymptomatic infection. VE against infection with the Beta (B.1.351) variant was not
significantly reduced during the clinical trial in South Africa®.

Although at the time of writing there were at least 12 other COVID-19 vaccines that had received
emergency authorization for widespread use in at least one country, we could not locate effectiveness
studies meeting our inclusion criteria. This was especially notable for Gamaleya’s Sputnik V and
Sinopharm-Beijing’s BBIBP-CorV, which have each been deployed in dozens of countries (Table 1).

Discussion

The development of COVID-19 vaccines has been an astounding feat of science. Within a year of
detecting the first outbreak and isolating the SARS-CoV-2 virus, multiple vaccines were being deployed
around the world. In this review, we systematically collected and reported efficacy and effectiveness
(“VE”) values by vaccine platform, disease outcome, number of doses, and SARS-CoV-2 variant. These
findings demonstrated robust evidence for the high VE of COVID-19 vaccines both in clinical trials and
real-world settings. We found that across all vaccine platforms, protection against severe infection or
death in the general population was at least 80% and often close to 100%. VE against symptomatic
disease was heterogeneous between vaccine products and studies but was almost always greater than
65% and often greater than 90%. The vast majority of studies showed that vaccines provided protection
against infection itself - not just disease - demonstrating the potential for indirect protective effects (i.e.,
“herd immunity”). The degree of protection offered by only a single dose of two-dose vaccine courses
varied by product. Most vaccines retained high levels of protection for most SARS-CoV-2 variants of
concern, especially against severe outcomes. A few studies provided evidence of slight reductions in
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VE for infection or mild disease with the Beta (B.1.351) and Delta (B.1.617.2) strains. No studies
meeting our inclusion criteria provided VE estimates for the Gamma (P.1) strain.

There are several important components of COVID-19 vaccine efficacy/effectiveness that we did not
address in this study. Individuals previously infected with COVID-19 tend to have elevated levels of
neutralizing antibodies (nAb) against SARS-CoV-2, and some studies have demonstrated that with only
a single vaccine dose these individuals tend to reach similar nAb levels as individuals without a history
of infection reach only after two doses'®'"°, Thus, VE could differ by serostatus. Some clinical trials
excluded individuals seropositive at baseline and those that did not generally did not have enough
power to test for differences in VE by serostatus at baseline. In Qatar, one observational study found
that the vaccine effectiveness of BNT162b2 (Pfizer) was increased in individuals with a previous history
of infection"', and another found that among unvaccinated persons, prior infection reduced the risk of
new infection by 74%'"2. Because infection results in natural immunity, including persons previously
infected with SARS-CoV-2 in the unvaccinated group can bias estimates of VE downward. Of 58
observational studies included in this review, 19 included persons with previous SARS-CoV-2 infection.

Knowledge gained from studying vaccines for other pathogens in humans and animals shows that time
may be an important dimension for vaccine efficacy. After vaccination (or infection), there is a
necessary period during which antibody-producing plasma cells and their B cell precursors expand to
levels necessary to reduce the risk of infection or disease after an exposure'. This interval is often
estimated as around 2 weeks, which is why studies almost always count only cases after this time
period when calculating VE?*'"*"'°. However, protection can continue to increase for a few months, as
suggested in the Janssen (Ad26.COV2.S) trial®®. Over longer time periods, immune protection is
maintained by long-lived plasma cells and memory B and T cells, but numbers of these cells can decay
over time, leading to waning in VE#3"113.114.116 \Whjle most studies reviewed here were conducted in a
short time period after vaccination (< 6 months) and did not examine waning, this is currently a critical
issue for COVID-19 vaccines, and new studies will help address this question over the next year.
Several recent reports have suggested reductions in VE over time'841117-120 \while the WHO regards
current evidence as inconclusive and stresses prioritization of primary doses''. Despite this, several
governments have already begun administering additional “booster” doses (e.g., France'?, Israel'®),
and others have announced tentative plans to do so in the future (e.g., US').

For multi-dose vaccine regimens, the time interval between the initial dose and any follow up doses
may affect the overall VE. While few clinical trials included variation in dose spacing, the trial of
AZD1222 (AstraZeneca) varied the interval between doses and found that efficacy increased from 55%
with less than 6 weeks between doses to 81% with more than 12 weeks®. In real-world settings, this
interval often varied due to explicit policies of delaying second doses in favor of universal partial
vaccination'?'%, allowing for evaluation of its impact on both nAb levels and VE"'®'?7_ Currently, while
most vaccine manufacturers and international advisory committees (including WHQO?%) recommend that
initial and subsequent vaccine doses be with the same product - as this was the regimen tested in
clinical trials - many countries have adopted more flexible policies allowing for “mixing and matching” of
doses'"3 often in response to supply constraints. In immunology, this strategy is termed
“heterologous prime boost” '*2 and has been explicitly investigated in vaccine studies as a way of
enhancing the strength and breadth of immunity (e.g., for HIV'®, influenza'*, and Ebola'®).
Gamaleya’s Sputnik V vaccine uses two different modified adenoviruses to deliver the gene for the
SARS-CoV-2 spike protein in the first (Ad26) vs second doses (Ad5)*2. Preliminary studies have shown
that boosting AstraZeneca’s AZD1222 vaccine with Pfizer's BNT162b2 or Moderna’s mRNA-1273
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increases nAb levels compared to two doses of AZD1222 alone''%°, and an observational study in
Denmark found an effectiveness of 88% against SARS-CoV-2 infection for the combination of 1 dose of
AZD1222 and a second dose of either mRNA vaccine®. Further work is needed to understand which
vaccine combinations are safe and effective for COVID-19.

At an individual level, the goal of vaccination against COVID-19 is to prevent morbidity (e.g. symptoms,
hospitalization, death), but from a population-level perspective, there is an additional goal of reducing
transmission. The additional indirect protection offered by vaccines slows the spread of infection, and
removes the need for complete vaccine coverage, which is currently a challenge as no vaccine is
approved yet for use in children. For individuals who become infected with SARS-CoV-2 despite
vaccination (i.e., “breakthrough” infection), an important additional efficacy metric is the reduction in
their potential for transmission'. A few studies have estimated this reduction for COVID-19 by
enrolling and testing close contacts of cases''87:%:142-145  SARS-CoV-2 viral load in the respiratory tract
is expected to be a determinant of transmission risk, and other studies have measured reductions in
viral load in breakthrough (versus unvaccinated) cases'®'9197.14¢ The ability of COVID-19 vaccines to
reduce transmission, especially in individuals with asymptomatic or mild infection, is expected to be
especially important as vaccine access is expanded to children, in whom infection tends to be mild.

In conclusion, data from a wide variety of study types and settings demonstrate that COVID-19

vaccines provide high levels of protection against severe disease, and additionally protect against
infection and mild disease, even for major SARS-CoV-2 variants of concern.
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FIGURES & TABLES
Countries Phase 3 Efficacy Trial
Vaccine # Using as Peer
Vaccine Name type WHO Status Developed in  of 15/9/21 Data? Cls? reviewed? Ref
AstraZenecal AzD1222
Oxford ChAJOX1- 38,50,51,55
nCoV-19 viral vector EUL Authorized UK 121 Yes Yes Yes B
Pfizer/
BioNTech BNT162b2 mMRNA  EULAuthorized Germany 97 Yes Yes  Yes 241,56
Gamaleya Sputnik V Submission
Institute Gam-COVID-Vac viral vector in Progress Russia 71 Yes  Yes Yes 42
Moderna mRNA-1273 mRNA  EULAuthorized USA 68 Yes  Yes Yes ¥
Sinopharm- inactivated 57
Beijing BBIBP-CorV virus EUL Authorized China 60 Yes Yes Yes
Janssen/
Johnson & Ad26.COV2.S -
Johnson viral vector EUL Authorized USA 59 Yes Yes Yes
Sinovac CoronaVac inactivated 43,44,58
virus EUL Authorized  China 39 Yes Yes Yes o
. inactivated
UL LE A virus EOI Accepted India 9 Yes Yes No %
CanSinoBIO Ad5-nCoV viral vector EOI Accepted China 8 Yes No No
Anhui Zhifei protein Submission
Longcom ZIFIVAX subunit in Progress China 2 No No No
Soberana 02 Submission 5
BioCubaFarma FINLAY-FR-2 conjugate in Progress Cuba 2 Yes Yes No
protein Submission
Vector Institute EpiVacCorona subunit in Progress Russia 2 No No No
Abdala protein Submission -
BioCubaFarma CIGB-66 subunit in Progress Cuba 1 Yes Yes No
inactivated Submission
BioKangtai KCONVAC virus in Progress China 1 No No No
Chumakov inactivated Submission
Center KoviVac virus in Progress Russia 1 No No No
inactivated Submission
IMBCAMS Covidful virus in Progress China 1 No No No
Sinopharm- inactivated 57
Wuhan WIBP-CorV virus EOI Accepted China 1 Yes Yes Yes
Kazakhstan inactivated Submission
RIBSP QazCovid-in virus in Progress Kazakhstan 1 No No No
inactivated Submission
Shifa COViran Barakat virus in Progress Iran 1 No No No
Soberana 02+ protein Submission 59
BioCubaFarma FINLAY-FR-1A subunit in Progress Cuba 0 Yes Yes No
protein Submission
Clover SCB-2019 subunit in Progress China 0 No No No
CureVac CVnCoV mRNA EOI Accepted Germany 0 Yes No No
protein
Novavax NVX-COV2373 S bunit  EOlAccepted  USA 0 Yes Yes  Yes 39.40.52
CoV2 preS protein
Sanofi dTM-ASO03 subunit EOI Accepted France 0 No No No
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Table 1: Status of COVID-19 vaccines within the World Health Organization Emergency Use Listing
evaluation process. Vaccine products are listed in descending order based on the number of countries in which
the vaccine is currently in use. Vaccines included in the current study - based on availability of efficacy data from
Phase 3 clinical trials - are highlighted in grey. Abbreviations: EUL = emergency use listing, EOI = expression of
interest, Cl = confidence interval. Vaccine details were obtained from McGill University’s COVID-19 Vaccine
Tracker: hitps://covid19.trackvaccines.org/, which aggregates data from multiple sources. Original source for
WHO EUL status :

https://extranet.who.int/pgweb/key-resources/documents/status-covid-19-vaccines-within-who-eulpg-evaluation-pr

ocess
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Vaccine
AZD1222 BNT162b2 Ad26.COV2.S
(Oxford- (Pfizer- CoronaVac mRNA-1273 (Janssen/Johnson
AstraZeneca) BioNTech) (Sinovac) (Moderna) & Johnson)

Total (Number) 22 51 2 14 2
Outcome type

Death 1 6 2 0 0

Severe disease 10 22 2 7 0

Symptomatic disease 9 19 1 5 0

Asymptomatic

infection 0 5 0 1 0

Any infection 11 34 1 11 2
Population type

General population 12 24 1 10 1

Health care workers 1 9 0 2 0

Hospital patients 1 4 0 1 0

LTCF residents 1 3 0 0 0

Older adults (= 65

years) 7 10 1 1 0

Chronically ill 1 0 0 0 0

Pregnant women 0 1 0 0 0

Priority groups 0 1 0 0 0
Study design

Test-negative case

control 9 18 1 9 0

Traditional

case-control 0 2 0 0 0

Prospective cohort 6 11 1 1 0

Retrospective cohort 6 20 0 5 2

Screening method 1 2 0 0 0
# of doses

Complete 6 33 2 8 1

Partial 18 36 2 9 N/A

Both 9 30 2 0
Variants of concern

Alpha 4 6 0 3 0

Beta 0 2 0 2 0

Gamma 0 0 0 0 0

Delta 4 5 0 1 0

Table 2. Summary of vaccine effectiveness studies. Number of studies of each type included in the review. No
studies reported for other vaccine candidates met our inclusion criteria (see Methods). Details of all the
individual studies are included in Table S1.
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C. COVID-19 vaccine trials in Russia
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B. COVID-19 vaccine trials in India
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D. COVID-19 vaccine trials in South Africa
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F. COVID-19 vaccine trials in United Kingdom
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Figure 1. Local context of Phase 3 clinical trials of COVID-19 vaccines. For each country, the time period
during which outcomes were observed during each vaccine trial is shaded grey. For each two week period, the
average daily incidence of reported cases is shown (height of bars)'’. The contribution of each major variant of
concern to total case counts is estimated from the reported fraction of sequenced SARS-CoV-2 samples
belonging to that strain (fill color)'®. Figure includes only vaccine trials described in published or pre-print reports,
trial sites with at least 10,000 individuals from the general adult population, and countries regularly reporting
SARS-CoV-2 lineages to the GISAID database.
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Figure 2. Vaccine efficacy (VE) against symptomatic COVID-19, from Phase 3 clinical trials. Each efficacy
value is for the complete vaccine course (1 dose for Ad26.COV2.S/Janssen, 3 doses for BioCubaFarma/Abdala
and Soberana02+/BioCubaFarma, and 2 doses for all others).
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Figure 3. Vaccine efficacy and effectiveness (“VE”) estimates for BNT162b2, a two-dose mRNA vaccine
developed by Pfizer/BioNTech. Estimates are colored by the viral variant against which the VE value was
measured. Solid markers are estimates from randomized clinical trials (efficacy values), and open markers are
estimates from observational studies (effectiveness values). The source of each estimate is given by the labels on
the left side ( “(reference number) Country, population”). Within each disease severity level, estimates are ordered

alphabetically by country, and then by population
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Figure 4. Vaccine efficacy and effectiveness (“VE”) estimates for mMRNA-1273, a two-dose mRNA vaccine
developed by Moderna. Estimates are colored by the viral variant against which the VE value was measured.
Solid markers are estimates from randomized clinical trials (efficacy values), and open markers are estimates

from observational studies (effectiveness values). The source of each estimate is given by the labels on the left

side ( “(reference number) Country, population”). Within each disease severity level, estimates are ordered
alphabetically by country, and then by population.
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Figure 5. Vaccine efficacy and effectiveness (“VE”) estimates for AZD1222, a two-dose viral vector
vaccine developed by AstraZeneca. Estimates are colored by the viral variant against which the VE value was
measured. Solid markers are estimates from randomized clinical trials (efficacy values), and open markers are
estimates from observational studies (effectiveness values). The source of each estimate is given by the labels on
the left side ( “(reference number) Country, population”). Within each disease severity level, estimates are ordered
alphabetically by country, and then by population.
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Figure 6. Vaccine efficacy and effectiveness (“VE”) estimates for CoronaVac, a two-dose
inactivated virus vaccine developed by Sinovac. Estimates are colored by the viral variant against
which the VE value was measured. Solid markers are estimates from randomized clinical trials (efficacy
values), and open markers are estimates from observational studies (effectiveness values). The source of
each estimate is given by the labels on the left side ( “(reference number) Country, population”). Within
each disease severity level, estimates are ordered alphabetically by country, and then by population.
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Figure 7. Vaccine efficacy and effectiveness (“VE”) estimates for Ad26.COV2.S, a single-dose
viral vector vaccine developed by Janssen/Johnson & Johnson. Estimates are colored by the viral
variant against which the VE value was measured. Solid markers are estimates from randomized clinical
trials (efficacy values), and open markers are estimates from observational studies (effectiveness values).
The source of each estimate is given by the labels on the left side ( “(reference number) Country,
population”). Within each disease severity level, estimates are ordered alphabetically by country, and then
by population.
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Figure 8. Vaccine efficacy and effectiveness (“VE”, %) estimates by SARS-CoV-2 variants of
concern. Estimates are colored by the vaccine for which the VE value was measured. Solid markers are
estimates from randomized clinical trials (efficacy values), and open markers are estimates from
observational studies (effectiveness values). The source of each estimate is given by the labels on the left
side ( “(reference number) Country, population”). Within each disease severity level, estimates are
ordered alphabetically by country, and then by population.
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